Daher, Safran, Airbus Demonstrate EcoPulse Hybrid-Electric Propulsion System

EcoPulse, the hybrid-electric distributed propulsion aircraft demonstrator jointly developed by Daher, Safran and Airbus to support aviation’s decarbonization roadmap, has successfully performed its first flight test in hybrid-electric mode, the companies announced on Dec. 5. 

The demonstrator flew with its electrically-driven “ePropellers” activated, powered by a battery and a turbogenerator. 

EcoPulse took off from Tarbes Airport, in southern France near the Spanish border, on Nov. 29, just after 10:30 a.m. local time. The test flight lasted nearly two hours. 

During the flight, the crew engaged the electric propellers and successfully tested the aircraft demonstrator’s flight control computer, high-voltage battery pack, distributed electric propulsion and hybrid electric turbogenerator, Airbus said.

EcoPulse’s first hybrid flight follows extensive ground tests and 10 hours of flight tests of the aircraft with the electrical systems inactive.

Based on a Daher TBM aircraft platform, EcoPulse is equipped with six integrated electric thrusters or e-Propellers supplied by Safran, distributed along its wings. Its propulsion system integrates two power sources: an electric generator driven by a gas turbine also supplied by Safran, and a high-energy density battery pack supplied by Airbus. 

At the heart of the aircraft architecture is a power distribution and rectifier unit, or PDRU, that protects the high-voltage power distribution network.

The battery pack designed by Airbus is rated at 800 Volts DC and can deliver up to 350 kilowatts of power. Airbus also developed the flight control computer that controls aircraft maneuvers using the ePropellers, and synchrophasing to support future aircraft acoustic recommendations, the company said. 

The demonstrator aims to evaluate the operational advantages of integrating hybrid-electric distributed propulsion, with specific emphasis on carbon emissions and noise-level reduction. This disruptive propulsion architecture enables a single independent electrical source to power several engines distributed throughout the aircraft.

“We confirmed today that this disruptive propulsion system works in flight, which paves the way for more sustainable aviation,” said Eric Dalbiès, Safran’s executive vice president of strategy and chief technology officer. “The lessons learned from upcoming flight tests will feed into our technology roadmap and strengthen our position as leader in future all-electric and hybrid-electric propulsive systems.”

“The flight campaign will give Daher invaluable data on the effectiveness of the onboard technologies, including distributed propulsion, high-voltage batteries and hybrid-electric propulsion,” commented Pascal Laguerre, Chief Technology Officer at Daher. “We’re working to converge practical and significant know-how on design, certification and operation to shape our path toward more sustainable aircraft for the future.” 

Unveiled at the 2019 Paris Air Show, EcoPulse is one of the major collaborative projects in Europe to reduce the aviation industry’s reliance on fossil fuels. It is supported by the French Civil Aviation Research Council, and co-funded by the French Civil Aviation Authority through a French government economic recovery plan and NextGeneration EU. 

“This is a major milestone for our industry and we’re proud to have powered the EcoPulse demonstrator first flight with our new battery systems,” said Sabine Klauke, chief technical officer at Airbus. High-energy density batteries will be necessary to reduce carbon emissions from aviation, whether for light aircraft, advanced air mobility or large hybrid-electric aircraft. Projects like EcoPulse are key to accelerating progress in electric and hybrid electric flight, and a cornerstone of our aim to decarbonize the aerospace industry as a whole.”

Boost Internet Speed
Free Business Hosting
Free Email Account
Free Secure Email
Secure Email
Cheap VOIP Calls
Free Hosting
Boost Inflight Wifi
Premium Domains
Free Domains